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Abstract—A partial differential equation (PDE) model for 
the dynamics of a thin piezoelectric plate in an electric field is 
presented. This PDE model is discretized via the finite volume 
method (FVM), resulting in a system of coupled ordinary dif-
ferential equations. A static analysis and an eigenfrequency 
analysis are done with results compared with those provided 
by a commercial finite element (FEM) package. We find that 
fewer degrees of freedom are needed with the FVM model to 
reach a specified degree of accuracy. This suggests that the 
FVM model, which also has the advantage of an intuitive inter-
pretation in terms of electrical circuits, may be a better choice 
in control situations.

I. Introduction

Minimizing the size of electrical servo-drives used in 
small-scale actuation has become an important issue. 

Micro-satellites, micro-robot actuation, or servo-drives 
used in the automotive industry can exploit the properties 
of linear or rotary ultrasonic motors. These motors are 
actuators which are composed of piezoelectric materials. 
The piezoelectric materials can also be employed as sen-
sors. When used as actuators, piezoelectric materials de-
liver force and/or displacement proportional to an applied 
voltage, and when used as sensors, they deliver a voltage 
proportional to the applied force. To use these devices as 
an actuator or as a sensor, one has to know how to model 
and control them properly.

The dynamics of a piezoelectric plate in an electric field 
can be modeled with a pair of coupled partial differential 
equations (PDE): a hyperbolic PDE for the displacements 
and Gauss’ law for the electric displacement field. The 
finite element method (FEM) has been a popular choice 
for numerical studies of piezoelectric structures; some of 
the earlier works are [1]–[7]. One approach is to apply 
Hamilton’s variational principle to the Lagrangian for the 
fully 3-D problem, which results in a variational structure 
within which one can use the FEM [1]. For piezoelectric 
materials that are thin in one direction, one can make ap-
proximations via a Taylor expansion in the thin direction, 
resulting in 2-D problems which can be studied with the 
FEM [3]. Also, for thin domains one can simply assume 
uniformity of the electric field and strain in the thin direc-
tion, resulting in a 2-D problem which fits into the varia-

tional formulation and can then be studied with the FEM 
[7]. The finite volume method (FVM), popular in various 
other areas of engineering, does not appear to have been 
applied to piezoelectric structures before.

In this paper, the finite volume method is used to dis-
cretize the PDE model, producing a system of ordinary 
differential equations (ODEs) whose solution approxi-
mates the solution of the PDE model. One can choose the 
discretization to meet a specified accuracy. Some reasons 
to consider the FVM discretization are:

The FVM ODEs can be interpreted intuitively in •	
terms of of equivalent electrical circuits of the piezo-
electric system [8]. These circuits can then be imple-
mented using schematic capture packages. This makes 
it easier to interface the FVM model of the piezoelec-
tric system with the control circuits.
In discretizing the PDE, one may have to make choic-•	
es in how to apply the boundary conditions. As will be 
shown in Section V, the choices made in applying the 
boundary conditions can have significant impact on 
the rate of convergence of the discretized model to the 
true solution. The FVM approach allows one to imple-
ment these choices in a straightforward manner.
The FVM works easily with surface integrals, making •	
it easier to deal with phenomena that occur at the 
boundary between two different materials. Therefore, 
this method may be more suitable to model an ul-
trasonic motor because the operating principle of the 
motor is based on the friction mechanism that takes 
place at the common contact boundary between the 
stator and the rotor.

In this article, the FVM is applied to a thin piezoelectric 
plate, allowing the electric field to be assumed constant 
in space. Approximating the electric field in this way is 
common for thin piezoelectric materials and has the ad-
vantage of not only capturing the physics well but of also 
providing a simpler case study for numerical methods. 
Specifically, the system of coupled PDEs is reduced to a 
single PDE, resulting in a smaller system of ODEs after 
the discretization. However, the FVM could have equally 
well been applied to the full problem without this simpli-
fying assumption.

II. The PDE Model

The constitutive equations for a linear piezoelectric ma-
terial are
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The actuator equation (1) gives the stress, T(x, y, z, t), as 
a function of the strain, S(x, y, z, t), and the electric field, 
E(x, y, z, t), at each point in the material, at each moment 
in time. Similarly, the sensor equation (2) gives the charge 
density displacement vector, D(x, y, z, t), as a function of 
the strain and the electric field. The superscript t denotes 
the transpose and cE is the stiffness or elasticity matrix, 
εS is the dielectric matrix, and e is the electromechanical 
coupling term. The stiffness matrix, cE, is evaluated at 
a constant electric field and the dielectric matrix, εS, is 
evaluated at constant strain. From these, the dynamics of 
the piezoelectric material are determined [9] from New-
ton’s second law
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the absence of sources or sinks of charge
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and appropriate boundary conditions. In (3), ρ is the mass 
density of the piezoelectric material and
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where u, v, and w are the local displacements from rest 
in the x, y, and z directions, respectively. At a point on 
the boundary of the material, one can specify either the 
displacements (u, v, and w) or the normal and tangential 
stresses.

Additional body forces can be modeled by including a 
body force density vector K(x, y, z) resulting in

	 ru T Ktt = .Ñ × + 	 (6)

Applying the finite volume method to this equation fol-
lows naturally [8] from the methods presented here for 
(3).

Eq. (3) does not contain any loss terms. Although in 
many applications it is understood that nonlinear hyster-
esis phenomena cannot be ignored, currently there is no 
known theory for incorporating mechanical and dielectric 
losses, starting from first principles, that account for non-
linear phenomena.

In this article, the piezoelectric material is assumed to 
be thin in the z direction (see Fig. 1) and so the approxi-
mation of a constant electric field is made. This approxi-
mation has been used in modeling of piezoelectric mo-
tors [7], [10], [11], piezoelectric transformers [12]–[14], and 
other piezoelectric actuators that use piezoelectric plates 

[15]–[17]. Specifically, rather than solving1 equations (3) 
and (4) simultaneously for u and E, the electric field E is 
assumed to be constant and in the z direction only:
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0
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E
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As a result, one only needs to solve (3) for u. Once one 
has u, the sensor equation (2) can then be used to deter-
mine the current withdrawn from the power supply at any 
moment in time. This, in turn, can be used to control the 
system.

III. The Finite Volume Method

The finite volume method (FVM) is generally used to 
obtain numerical solutions of conservation laws [18], [19]. 
Many behaviors in nature can be described via conserva-
tion laws such as conservation of mass, energy, or charge. 
A conservation law for a conserved quantity Φ can be 
written in the form:

	
d
d
F
t

S= .-Ñ × +F 	 (8)

That is, the rate of change of quantity Φ equals the di-
vergence of the flux F plus any sources or sinks, S, of the 
quantity. Integrating the PDE (8) over a region Ω and 
applying the divergence theorem yields

	
d

d
d d d

t
V A S VF
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¶
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That is, the change in the amount of Φ in the region Ω is 
caused by the flux across the boundary, ∂Ω, plus whatever 
sources and sinks occur within Ω. Here, n is the outward 
normal and −F ∙ n corresponds to inward flow of Φ.

The finite volume method respects the conservation 
structure of the PDE—it keeps track of the fluxes at the 
boundary of each region, ensuring that the discretized ver-
sion of Φ is conserved. In general, these ideas can be used 
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Fig. 1. Piezoelectric plate of height H, length L, and width W.

1	The strain matrix, S, is determined by derivatives of u and so the 
unknowns in (3)–(4) are u and E.
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for any PDE which has a divergence term in it, including 
the dynamic equation (3) for the piezoelectric material.

The basic steps in the finite volume method are:

	 1) 	Divide the computational domain into subdomains. 
This is known as grid generation.

	 2) 	Approximate the integrated PDE on each subdo-
main. This requires approximating the flux across 
the boundary of each subdomain. The process is 
also called discretization. This results in a system of 
equations for the unknowns

	 F
W

F
W
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vol

dò 	 (10)

	 3) 	Solve the discretized system.

IV. Application of the Finite Volume Method to 
a Piezoelectric Plate

In the following, the dynamic equation (3) is consid-
ered for a piezoelectric plate (refer to Fig. 1). The plate 
is divided in a uniform manner so that all subdomains 
(called control volumes here) have the same size. Hence 
the accuracy of the approximate solution, which is linked 
to the size of the subdomains, is linked to the number of 
control volumes. The more control volumes there are, the 
more accurate is the approximate solution. In Section V, 
it is shown that it takes markedly fewer control volumes 
to approximate the displacements and natural frequencies 
of the piezoelectric plate using the FVM discretization 
than using COMSOL’s FEM discretization (Comsol Inc., 
Burlington, MA).

A. Grid Generation

The piezoelectric plate is shown in Fig. 1. It is divided 
into nxnynz control volumes each of length L/nx, width W/
ny, and height H/nz. If nx, ny, and nz are all greater than 
1, then each control volume is either an interior volume 
(has control volumes on all sides), a face volume (has one 
face in common with the boundary of the plate), an edge 
volume (has two faces in common), or a corner volume 
(has three faces in common). An interior control volume 
is shown in Fig. 2.

In approximating the fluxes across the faces of this in-
terior control volume, one needs not only the six nearest 
neighbors (those that share a common face with this vol-
ume) but also the twelve next-nearest neighbors (those 
that share a common edge with this volume). The neigh-
bors contained in the xz plane through the point P are 
shown in Fig. 3. Fig. 4 is the corresponding figure for the 
yz plane through the point P. Fig. 5 is the correspond-
ing figure for the xy plane through the point P. Figs. 3–5 
contain the distances between the center of the interior 
control volume, P, and neighboring control volumes as 
well as the distances between the centers of neighboring 
control volumes. When the piezoelectric plate is divided 

in a uniform manner, these distances are one of L/nx, W/
ny, or H/nz. Fig. 6 gives the distances from P to the six 
faces of the control volume. In the subsequent FVM dis-
cretization, formulae are given referring to the distances 
given in Figs. 3–6, allowing for a non-uniform division of 
the piezoelectric plate.

B. Step 2: Discretization

Here, a set of ODEs is found to approximate the PDE 
(3). There are 3nxnynz ODEs, three for each control vol-
ume. The unknowns are uijk(t), vijk(t), and wijk(t), which 
approximate the average value of the solution of (3) over 
the (i, j, k)th control volume:
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(11)
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Fig. 2. An interior control volume. P labels its center. Its faces are la-
beled f (front), r (rear), e (east), w (west), n (north), and s (south). 
The centers of the corresponding nearest-neighbor control volumes are 
labeled E, W, N, S, F, and R.

Fig. 3. An xz slice through the center of the interior control volume. The 
four faces appear as edges: f, e, r, and w. The nearest neighbors are as 
in Fig. 2. The four next-nearest neighbors have centers labeled FW, FE, 
RE, and RW. Some distances between different centers are also labeled.
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In the following, rather than writing everything in terms 
of indices i, j, and k, the three ODEs are presented for a 
generic control volume centered at P.

Eq. (3) is integrated over the control volume ΔV shown 
in Fig. 7. This results in 

	 r
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In (12), the symmetric stress tensor T is given in terms 
of six components T1, T2, …, T6. Applying the divergence 
theorem yields
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(13)

The surface integrals are calculated2 on each of the bound-
ing faces e, w, n, s, f, and r shown in Fig. 2. For example, 
the first component of (13) is
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The volume integral equals the average value of u in ΔV 
times the volume of ΔV and is denoted uPΔxΔyΔz. (As a 
convention, the average values of quantities in the control 
volume of interest will have the sub-index P. The average 
values in the neighboring elements will have the sub-in-
dexes E, W, N, and so on.) Similarly, the surface integrals 
equal the average value over the corresponding face times 
the area of the face. For example, the first surface integral 
in (14) is denoted T1eΔyΔz. Eq. (14) is then written as
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Fig. 4. A yz slice through the center of the interior control volume. The 
labeling is analogous to that given in Fig. 3.

Fig. 5. An xy slice through the center of the interior control volume. The 
labeling is analogous to that given in Fig. 3.

Fig. 6. Internal distances in the control volume of interest.

Fig. 7. The control volume ΔV and the stresses on its boundary. T1, 
T2, and T3 are the normal stresses. T4, T5, and T6 are the tangential 
stresses.

2	For the East face, e, the outward normal is n = (1 0 0)t. The dif-
ferential area element is dydz and so the integral over this portion of the 
boundary ∂ΔV is 
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This is an ODE for the average value of u in the control 
volume. However, one needs to write the stress tensor T 
in terms of the displacement u. Like the stress tensor, 
the strain tensor S is symmetric and is determined by six 
components:
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The actuator and sensor equations (1) and (2) can then be 
written in a compact vector-matrix form: 
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The piezoelectric plate being modeled is thin in the z di-
rection and has polarization oriented along the z axis. For 
this reason, the electric field is assumed to be constant 
and to be in the z direction (E1 = E2 = 0).

In (15), the tensor components T1e, T1w, T6n, T6s, T5f, 
and T5r are expressed as a function of the strains and the 
electric field, as shown in (17). The resulting equation is
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In (18), the electric field component appears without sub-
scripts e or w. This is because E3 is assumed constant in 
space. As a result, its appearances in T1e and T1w cancel: 
the electric field does not enter in the ODEs for interior 

control volumes. The strain terms in (18) are now writ-
ten as the derivatives of the displacements u, v, and w, as 
shown in [20]. Thus, (18) becomes
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Eq. (19) holds exactly for any solution of the PDE (3); no 
approximations have been made. One now approximates 
the normal and tangential derivatives in (19). First, the 
case of an interior control volume is considered.

1) Interior Control Volumes: Such a control volume has 
control volumes on all sides and so the average value of a 
normal derivative over a face can be approximated by a 
linear function of the average displacements in the control 
volumes on either side of that face:
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The tangential derivatives are approximated as follows. 
The average of the derivative ∂v/∂y over the East bound-
ary is approximated by linear interpolation between the 
average of ∂v/∂y over the volume centered at P and the 
volume centered at E (refer to Figs. 5 and 6): 
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These, in turn, are approximated using the average dis-
placements in the control volumes N, S, NE, and SE (refer 
to Fig. 5): 
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Substituting (27) and (28) into (26) yields: 
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Similarly, the remaining tangential derivatives are ap-
proximated by:
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The distances in these equations are shown in Figs. 3–6. 
Substituting (20)–(25) and (29)–(36) into (19) yields
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Refer to Appendix B for the coefficients in (37). Eq. (37) 
is an ODE for u, the displacement in the x direction, of an 
interior control volume. The second and third components 
of (13) are approximated in a similar way, resulting in 
ODEs for v and w, the displacements in the y and z direc-
tions, respectively: 
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Refer to Appendix B for the coefficients in (38) and (39).

2) Boundary Control Volumes: Returning to (19), one 
needs to approximate the normal and tangential deriva-
tives averaged over a face. For an interior control volume, 
this was done using the average displacements at neigh-
boring volumes. A boundary control volume has at least 
one face which is on the boundary of the piezoelectric 
material. Because one cannot refer to the displacements 
averaged over the neighboring control volume on the other 
side of this face, instead one refers to the displacements 
averaged over the face itself.

The three displacements averaged over a boundary face 
are determined by the three boundary conditions on the 
face. For example, consider an East face on the boundary 
with the boundary conditions specifying the normal and 
tangential stresses

	 T t1 1= ,	 (40)

	 T t6 6= ,	 (41)

	 T t5 5= .	 (42)

Using the values t1, t5, and t6, one can approximate uE, 
the displacement in the x direction averaged over the East 
face, and vE and wE, the displacements in the y and z di-
rections averaged over the East face, respectively. These 
average displacements are then used directly in the ODEs 
(37)–(39). Boundary conditions corresponding to a free 
face would be t1 = t5 = t6 = 0. Boundary conditions cor-
responding to a face restrained from moving in the normal 
direction would be zero displacement in the normal direc-
tion and zero stress in the tangential directions. At an 
East face, this would correspond to uE = 0, t5 = 0, and 
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t6 = 0. If the East face is constrained from moving, this 
would correspond to uE = vE = wE = 0.

One might hope that the three boundary conditions on 
a boundary face would yield three equations which could 
then be solved for the three displacements. In fact, the 
three equations involve (unknown) displacements aver-
aged over neighboring boundary faces. As a result, all the 
boundary faces have to be considered at once, resulting in 
a system of 6(nxny + nynz + nznx) linear equations that 
reflect the boundary conditions on the 2(nxny + nynz + 
nznx) boundary faces. Solving this system determines the 
average displacements on all the boundary faces, which 
are then used in the ODEs (37)–(39).

In the following, the three types of boundary control 
volumes are considered: face volumes (have one face on 
the boundary of the piezoelectric material), edge volumes 
(two faces in common), and corner volumes (three faces 
in common).

3) Face Volume With Face on the East Boundary: Fig. 
8 shows an example of a control volume which has its face 
on the East side of the boundary of the piezoelectric mate-
rial. By Figs. 2 and 7, such a control volume will have the 
tensor components T1, T5, and T6 given by boundary con-
ditions, denoted t1, t5, and t6. These components are ex-
pressed in terms of the strains and the electric field within 
the control volume (17). The resulting equations are 

	 c c cS S S e E t11 12 13 31 3 11e 2e 3e+ + - = ,	 (43)

	 c S t66 66e = ,	 (44)

	 c S t55 55e = .	 (45)

As before, the strain terms in (43)–(45) are expressed in 
terms of the normal and tangential derivatives of the dis-
placements averaged over the face, as shown in [20]: 
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In (46)–(48), the normal and tangential derivatives aver-
aged over the face are approximated by linear functions of 
the displacements in the control volumes adjacent to these 
boundaries with expressions similar to equations (20)–(25) 
and (29)–(36). This results in
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The coefficients in (49)–(51) are given in Appendix B. In 
using equation (20), the displacement uE corresponds to 
the displacement in the x direction averaged over the East 
face (see Fig. 8) and δXE is the distance from the midpoint 
of the control volume to the East face (denoted δXe). Simi-
larly, in using equation (31), because δXE equals δXe, one is 
really using the approximation

	
¶
¶
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z

w w
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FE RE

ZEFE ZERE
=

d d
.	 (52)

Note that the electric field E3 appears in the (49) for 
uE. Because the electric field is assumed uniform in space, 
leading to cancellations as in (18), it enters only via the 
boundary conditions.

Appendix C addresses the remaining face volumes 
(West, North, South, Front, and Rear) as well as the edge 
volumes and corner volumes.

C. Step 3: Solution of Equations

The piezoelectric plate is divided into nxnynz control 
volumes resulting in 3nxnynz second-order ODEs (37)–(39) 
for the average displacements of the control volumes. 
These displacements are written as a vector X of length 
3nxnynz:
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u
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w
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To reduce the system of second-order equations to a sys-
tem of first-order equations, introduce Y:
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(54)
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Fig. 8. Control volume placed at the East boundary.
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The second-order differential equations (37)–(39) depend 
not only on the displacements in the control volumes, but 
also on the displacements at the boundaries. The vector 
U, of length 6(nxny + nynz + nznx), containing the average 
displacements at the boundary faces, is defined as:

	 U =
u
v
w

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú
boundaries

.	 (55)

The second-order system is then written in the vector-
matrix form:

	 X Y= 	 (56)

	 Y AX BU= + ,	 (57)

where A and B contain the coefficients of the displace-
ments in the differential equations (37)–(39). The dot on 
X and Y represents differentiation with respect to time. 
The values of the displacements at the boundaries are 
written as a linear combination of the displacements in 
the boundary control volumes, the displacements at the 
boundaries, the stresses at the boundaries, and the forcing 
terms produced by the electric field, as shown in (49)–(51) 
and (162)–(176):

	 U CX DU F= + + +  .	 (58)

In (58), F is the forcing vector that contains the forcing 
terms produced by the electric field.   is the vector that 
contains the prescribed stresses from the boundary condi-
tions such as t1 and the like. C and D contain the coeffi-
cients of the displacements in the boundary equations. 
Eqs. (56)–(58) can be represented in an equivalent circuit 
form in a direct and intuitive manner [8]. This would be 
helpful for use in a controller. See [21], [22], and [23] for 
circuit formulations of FEM models.

Solving (58) for U and substituting into (57), the first-
order system (56), (57) becomes:
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		  (59)

Given initial data, (59) is then solved in Matlab (The 
MathWorks, Natick, MA).

To find the eigenmodes and eigenfrequencies of the 
piezoelectric plate, one computes the eigenvalues and 
eigenvectors of the system matrix A1

	 A
I

A B I D C1 1
0

0
=

+ -
é

ë
ê
ê

ù

û
ú
ú-( )
.	 (60)

One advantage of the FVM model in comparison with a 
finite element implementation via COMSOL, for example, 
is that the FVM approach allows one to do such a study 
of the system matrix A1.

V. Simulations

Simulations are presented for a piezoelectric plate 
shown in Fig. 9. The plate is made from PIC151 material 
from Physik Instrumente (Karlsruhe, Germany); its mate-
rial properties are given in Appendix A. The dimensions 
of the piezoelectric plate are length = 0.070  m, width 
= 0.025 m, and height 0.0005 m. The simulations were 
performed on a Toshiba Satellite P300–0K5 (Tokyo, Ja-
pan) with an Intel Core Duo Processor P7350 (2.0 GHz, 
1066 MHz FSB, 3 MB L2 Cache; Santa Clara, CA) and 
4 GB of RAM running Windows 7 (Microsoft Corp., Red-
mond, WA).

A. Static Analysis

The West face of the plate is restrained from moving 
in the x direction but it can freely move in the y and z 
directions: the boundary conditions are u = 0, and the 
tangential stresses (T5, T6) equal zero. On all the other 
faces of the plate the boundary conditions are zero nor-
mal and tangential stresses. The coordinates are chosen so 
that the midpoint of the West face of the plate is (0, 0, 0). 
A 100 V dc voltage is applied to the piezoelectric plate. 
The corresponding electric field is E3 = −100/.0005 V/m. 
The exact static solution is
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.	 (61)

The static solution corresponds to a plate that expands 
uniformly in the x and y directions and compresses uni-
formly in the z direction in response to the electric field; 
after the electric field is turned on, the brick-shaped piezo-
electric material deforms to a somewhat shorter, some-
what longer and wider brick-shape.

This exact solution is used to test the FVM approxima-
tion. A uniform grid is chosen and the static solution is 
computed via

	 ( ) ,A B I D C B I D F+ - - - +- -( ) = ( ) ( )1 1X  	 (62)
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Fig. 9. Piezoelectric plate with West face held fixed, other faces free.
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[see (59)]. The value of the resulting displacement in the x 
direction, u, at the midpoint of the East face (location A) 
is compared with the values from the exact solution (61). 
That is, the displacement u in (61) is evaluated at x = 
0.7, yielding u = 3.0035 μm. Table I presents these values 
and the relative errors; the FVM approximation of the 
solution is correct up to round-off error. Indeed, because 
the exact solution is linear and the approximations of the 
derivatives are second-order accurate, it is expected that 
the code should capture this exact solution perfectly.

How the FVM model compares with a finite element 
method (FEM) is studied via COMSOL’s FEM implemen-
tation. COMSOL computes (3) and (4) with the boundary 
conditions for the displacement as given above and with 
the following boundary conditions for the electric field: zero 
flux density on the E/W/N/S faces and constant on the 
F and R faces. This results in an electric field that is zero 
in the x and y directions and constant in the z direction. 
(The boundary conditions are chosen to eliminate fring-
ing electrical flux.) Because the piezoelectric plate shown 
in Fig. 9 has a simple geometry, the COMSOL mode3 
Piezo Solid 3-D is used with linear brick elements and no 
electrical or mechanical losses. Losses are neglected in the 
COMSOL implementation to allow a fair comparison to 
the FVM model, which was developed without losses.

To compare the FVM model to COMSOL’s FEM im-
plementation, one needs to choose boundary conditions 
that do not result in an exact solution which has displace-
ments that are linear in x, y, and z. For example, the West 
face is restrained from moving in any direction: u = v = 
w = 0 and on all the other faces the boundary conditions 
are zero normal and tangential stresses. As above, a 100 V 
dc voltage is applied to the piezoelectric plate. The static 
solution is computed for the FVM model and the displace-
ment in the x direction, u, is found at the point A (see Fig. 
9). This is compared with the limiting value of 3.0472 μm. 
The limiting value is taken from a well-resolved COMSOL 
run with 234 252 degrees of freedom.

For the FVM simulations, the piezoelectric material is 
divided into control cells of uniform width, length, and 
height. The values of nx, ny, and nz are chosen as follows. 
For each triple (nx, ny, nz) the length, width, and height of 
the control volume are (.07/nx, .025/ny, .0005/nz). The nx 
and ny are chosen so that the length and width are similar 
to one another. The piezoelectric material is so thin that 
even with nz = 1, the height of the control cell is smaller 

than its length and width. For this reason, nz is held at the 
value 1 and nx and ny are increased until the control cell’s 
length and width are comparable to the height, at which 
point nz would be increased.

It is not obvious how to apply the boundary conditions 
to a material that has edges and corners. The West face is 
bounded by four edges, each shared with another face. The 
FVM discretization needs values for the displacements on 
the edges; these are determined by the boundary condi-
tions chosen for the edges. In the following, two choices 
are considered. The first choice (Type 1) assigns the four 
bounding edges the same boundary conditions as for the 
West face: u = v = w = 0. That is, the edges are glued 
down with infinite strength, just like the West face, and 
cannot move in any direction. The second choice (Type 2) 
assigns the four bounding edges zero displacement in the x 
direction (u = 0)—the edges cannot move toward or away 
from the wall that the West face is glued to. However, 
the displacements in the y and z directions, v and w, are 
not all constrained to zero displacement. For the edges 
shared by the West and Rear faces or by the West and 
Front faces, wRW and wFW are determined by extrapola-
tion, see equations (182) and (180) respectively. The al-
gorithm does not need values for v on these edges and so 
no assumptions are made on these. For the edges shared 
by the West and South faces or by the West and North 
faces, vSW and vNW are determined by extrapolation, see 
equations (198) and (194), respectively. No values for w 
are needed on these edges.

Table II presents the displacements in the x direction, 
u, at the point A (see Fig. 9) and the relative errors as 
computed using the FVM model using both the Type 1 
and Type 2 boundary conditions. Similarly, the static solu-
tion is computed via COMSOL and the displacements and 
relative errors are presented in Table III. The COMSOL 
simulations were performed using the linear solver Direct 
(SPOOLES) with the relative tolerance set to 1.0E−6 and 
the maximum number of iterations set to 25; all other 
settings are left at their defaults. Like the FVM model, 
parallelepipeds are used as the elements.

Fig. 10 presents the displacement in the x direction, u, 
at the point A for a larger number of runs of the FVM 
model with Type 1 and Type 2 boundary conditions as 
well as COMSOL’s FEM model. The horizontal axis is the 
number of degrees of freedom: 3nxnynz for the FVM mod-
els and as given by COMSOL for the FEM model. The 
horizontal dashed lines in the figure denote the limiting 
value 3.0472 μm and a 2% error window about this value. 
From the graph, COMSOL’s FEM model yields displace-
ments within 2% of the limiting value using about 940 
degrees of freedom. The FVM model with Type 1 bound-
ary conditions yields displacements within 2% using about 
430 degrees of freedom. The FVM model with Type 2 
boundary conditions yields displacements that are within 
2% of the limiting value for all values of nx, ny, and nz 
tested, starting with nx = ny = nz = 1.

Tables II and III also show the simulation times for the 
FVM and COMSOL simulations. The FVM simulation 
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TABLE I. The Displacement in the x Direction, u, at Point 
A, as Calculated With the FVM Model, Compared With the 

Exact Solution. 

nxnynz

Displacement 
u at A (μm) Relative error (%)

1 = 1 ∙ 1 ∙ 1 3.0035 4.8 × 10−11

27 = 3 ∙ 3 ∙ 3 3.0035 3.7 × 10−10

3	The exact path is Application Modes/MEMS Module/Structural Me-
chanics/Piezo Solid/
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times are significantly longer than the COMSOL ones. By 
timing the separate subroutines of our code, we found that 
more than 90% of the run time is spent constructing the 
matrices A, B, C, and D (59). The code was not written 
with speed as a goal; indeed, these large matrices were 
constructed using nested for loops (which increases the 
simulation times dramatically) and were not handled us-
ing Matlab’s sparse matrix data structure. To reduce the 
simulation times, one could code these matrices directly 
into a sparse matrix data structure and also use Matlab’s 
MEX files to speed up these parts of the code.

B. Eigenfrequency Analysis

For the eigenfrequency analysis, the West face is re-
strained from moving in any direction and the other faces 
have zero normal and tangential stresses. For the FVM 
model, one computes the eigenvectors and eigenvalues of 
the system matrix A1, see (60). For each eigenvector, one 
reconstructs a solution of the form eiωt(u, v, w). One first 
culls out those eigenvectors that result in solutions that 
have any displacement in the y or z directions; the remain-
ing eigenvectors result in solutions with v = w = 0. From 
these, one then selects the eigenvector for which u has a 
single maximum (or minimum) value. The eigenvalue (or 
frequency) corresponding to this eigenvector (or mode), as 
computed with different numbers of degrees of freedom, 
is shown in Table IV. In the following, this frequency is 
called the fundamental frequency.

The analogous fundamental frequency, as calculated 
with COMSOL, is shown in Table V. The computations 
are compared with the limiting value of 9951 Hz, taken 
from a well-resolved COMSOL run with 8360 degrees of 
freedom. The results shown in Tables IV and V are also 
plotted in Fig. 11. For the eigenfrequency analysis, the 
number of degrees of freedom for the FVM model is 6nx-
nynz.

Fig. 11 presents the fundamental frequency for the 
FVM model with Type 1 and Type 2 boundary conditions 
as well as COMSOL’s FEM model. The horizontal axis 
is the number of degrees of freedom. Horizontal dashed 
lines in the figure mark the limiting value of 9951 Hz and 
a 2% error window about this value. From the graph, 
both COMSOL’s FEM model and the FVM model with 
Type 1 boundary conditions yield frequencies within 2% 
of the limiting value using about 280 degrees of freedom. 
The FVM model with Type 2 boundary conditions yields 
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TABLE II. The Displacement in the x Direction, u, at Point A, as Calculated With the FVM 
Model for Different Numbers of Degrees of Freedom (DoF), Compared With the Limiting Value 

(3.0472 μm). 

Volume DoF

Type 1 boundary cond. Type 2 boundary cond.

Displ. 
(μm)

Rel. error 
(%)

Sim. time 
(s)

Displ. 
(μm)

Rel. error 
(%)

Sim. time 
(s)

3 9 2.6634 12.6 1.17 3.0035 1.43 1.17
27 81 2.9118 4.44 3.72 3.0789 1.04 3.70
147 441 2.9874 1.96 36.7 3.0615 0.469 36.7
507 1521 3.0156 1.04 312 3.0562 0.296 312
675 2025 3.0201 0.891 535 3.0555 0.271 530

TABLE III. The Displacement in the x Direction, u, at Point A, as Calculated with COMSOL for 
Different Numbers of Degrees of Freedom (DoF), Compared With the Limiting Value (3.0472 μm). 

Volume DoF Displ. (μm) Rel. error (%) Sim. time (s)

4 72 2.4028 21.1 0.06
12 144 2.7986 8.17 0.08
96 780 2.9819 2.15 0.10
384 2700 3.0160 1.03 0.27
864 5772 3.0276 0.645 0.63

Fig. 10. The horizontal axis denotes the number of degrees of freedom 
for the FVM and the COMSOL models. The vertical axis denotes u, the 
displacement in the x direction, at the point A. Solid line: data from 
COMSOL, dashed line with circles: FVM model with Type 1 boundary 
conditions, dashed line with ×s: FVM model with Type 2 boundary con-
ditions, horizontal dashed lines: 3.0472 μm and 3.0472 μm ±2%.
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displacements that are within 2% of the limiting value for 
all values of nx, ny, and nz tested, starting with nx = ny = 
nz = 1.

VI. Post–Processing and Control

For control purposes, one needs to know the current 
sinked or sourced by the power supply. This section pres-
ents how this can be easily approximated via the sensor 
equation (2).

As shown in Fig. 12, the piezoelectric plate has two 
electrodes: one on the Front (F) face and one on the Rear 
(R) face. An electric potential difference V is applied 
across the electrodes and an electric field E is created. 
The electric dipoles inside the piezoelectric material are 
deformed by the external electric field in such way that 
bound charges with opposing polarity will be generated at 
the positive and negative electrodes. The negative charges 
are generated at the interface with the positive electrode 
and the positive charges are generated at the interface 
with the negative electrode. At the interface between the 
metal and the piezoelectric materials, one can distinguish 
between two types of electrical charges: 1) the bound 
charge on the piezoelectric material generated by the de-
formation of the piezoelectric material or an externally 
applied voltage, and 2) a free charge in the metal at the 
metal/piezo interface with a sign that is opposite to the 
polarity of the bound charge in the piezo material at the 
metal/piezo interface. The free charge is supplied by the 
voltage power supply V.

Consider a small box, partially in the piezoelectric ma-
terial, partly in the metal, as shown in Fig. 13. Applying 
Gauss’ law to this box, one has

	 D( , , , ) ( ).x y z t Q t
S
ò × =dA 	 (63)

In (63), S is the closed surface bounding the box, D(x, y, z, t) 
is the electric flux density, dA is the differential area of 
the surface with an outward facing surface normal, and 
Q(t) is the charge inside the box. The height Δh of the box 
is taken very small so that the contribution to the integral 
(63) from the sides of S is negligible. As a result, (63) is 
approximated by
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TABLE IV. Fundamental Frequency, as Calculated With the FVM Method for Different 
Numbers of Degrees of Freedom (DoF), Compared With the Limiting Value (9951 Hz). 

DoF

Type 1 boundary cond. Type 2 boundary cond.

Freq. (Hz) Rel. error (%) Freq. (Hz) Rel. error (%)

18 10 916 9.70 9898 0.537
162 10 231 2.81 9968 0.173
882 10 044 0.933 9938 0.129
3042 9985 0.344 9930 0.211
4050 9977 0.258 9929 0.222

TABLE V. Fundamental Frequency, as Calculated with 
COMSOL for Different Numbers of Degrees of Freedom 

(DoF), Compared With the Limiting Value (9951 Hz). 

DoF Freq. (Hz) Rel. error (%)

64 10 699 7.51
168 10 243 2.93
768 10 032 0.817
2728 9974 0.234
5888 9957 0.0568

Fig. 11. The horizontal axis denotes the number of degrees of freedom 
for the FVM and the COMSOL models. The vertical axis denotes the 
fundamental frequency for the corresponding discretization. Solid line: 
data from COMSOL, dashed line with circles: FVM model with Type 
1 boundary conditions, dashed line with ×s: FVM model with Type 
2 boundary conditions, horizontal dashed lines: 9951 Hz and 9951 Hz 
±2%.

Fig. 12. Electrical boundaries of the piezoelectric plate.
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In (66), 


nM and 


nP are the outward facing surface normals 
at the top and bottom of S, respectively. ΔS is the area of 
the top (bottom) and the average value of D on the top is 
used for D|top(t). [D|bottom(t) is analogous.]

Because the height Δh of S is very small, the volume 
charge Q(t) inside S can be approximated by the free 
charge at the metal-piezoelectric material interface:

	 Q t t S( ) ( ) .» rS D 	 (65)

In (65), ρS(t) is the average free charge density on the 
metal side of the portion of metal-piezoelectric material 
interface within the surface S. Combining (65) and (64), 
dividing by ΔS, and taking ΔS to zero yields:

	 D D| |M M P P S( , , , ) ( , , , ) ( , , , ).x y z t n x y z t n x y z t× + × =
 

r 	 (66)

In (66), D|M(x, y, z, t) is the limit of the electrical flux den-
sity as taken from above (going from the metal toward the 
metal/piezoelectric interface) and D|P(x, y, z, t) is the limit 
of the electrical flux density as taken from below (from 
within the piezoelectric).

The electric flux density inside the metal is zero and for 
the Front (F) face of the piezoelectric material 


nP = (0, 0, 1)-  (see Fig. 13), hence (66) becomes4 

	 - »D x y t x y t3|F S( , , ) ( , , ).r 	 (67)

Eq. (67) yields the current withdrawn from the power sup-
ply:
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(68)

The sensor equation (17) determines D3 from the com-
puted solution:
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In (69), the strains at the boundaries are approximated by 
linear functions of the average displacements in adjacent 
control volumes: 
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The coefficients EB1 to EB3 in (70) are given in Appendix 
B. The total free charge on the Front face of the control 
volume is found by approximating the integral in (68): 

	 Q t D Sij ij
j

ny

i

nx

F F|( ) ( ) ,= -
==
åå 3

11

D 	 (71)

where ΔSij = (δXe + δXw)i(δYn + δYs)j.
In this way, given the approximate solution (u, v, w) at 

a sequence of times, one uses (71) to approximate the 
total free charge on the Front (F) face at those times. 
One then uses these to approximate the time derivative 
in (68), resulting in the current flowing across the Front 
face. There is no current flowing across the four free faces 
and the current flowing across the Rear face is equal and 
opposite to that flowing across the Front face.

VII. Conclusions

This paper presents a new modeling technique for 
piezoelectric devices by using the finite volume method. 
The modeling technique was developed by starting with 
the continuum equations (3) and (4) for the piezoelec-
tric material and discretizing them using the finite volume 
method. This results in a system of second-order ordinary 
differential equations. Simulations are presented and a 
comparison of the results with the finite element simu-
lations was performed. The resulting system of ordinary 
differential equations is easier to consider within a circuit 
framework; all circuits in electrical engineering are, in ef-
fect, an application of the finite volume method. In this 
paper, a simplifying assumption of constant electric field 
is made, resulting in a discretization of (3) only. The finite 
volume method could have been applied to the full system 
(3) and (4) resulting in a larger system of differential al-
gebraic equations.

Figs. 10 and 11 show that how one chooses to imple-
ment the boundary conditions can have a significant im-
pact on how quickly (in terms of degrees of freedom) the 
simulations converge to the limiting value. Reducing the 
number of degrees of freedom needed to reach a desired 
accuracy is quite useful for control purposes. Indeed, for 
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Fig. 13. Metal-piezoelectric plate boundary.

4	By approximating the normal 


nP with a constant vector, one is as-
suming that the piezoelectric material has not significantly deformed. In 
general, this normal will depend on space and time and one must use 
(13) (after setting D|M to zero).

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2010 at 16:36:36 UTC from IEEE Xplore.  Restrictions apply. 



any control problem it is important to keep the order of 
the plant model as small as possible because there are 
real-time implementation issues. The FVM model with 
the Type 2 boundary conditions does sufficiently well that 
a further model-order-reduction technique may not be 
necessary: the observed displacement is within 1% of the 
limiting value using only 180 degrees of freedom, the fun-
damental frequency was within 1% of the limiting value 
using only 18 degrees of freedom. Figs. 10 and 11 suggest 
that COMSOL’s implementation is comparable to the 
FVM model with Type 1 boundary conditions.

To modify how an FEM model implements boundary 
conditions at the edges, one would need to make special 
choices for the elements that occur at edges. One of the 
strengths of the FVM model presented here is that imple-
menting the boundary conditions is quite straight-forward, 
allowing one to find a choice which yields a fairly accurate 
answer with relatively few cells.

Appendix A  
Material Properties

The piezoelectric material simulated is PIC151 from 
Physik Instrumente. The stiffness matrix, cE, is evaluated 
at a constant electric field and the dielectric matrix, εS, is 
evaluated at constant strain.

The entries of the dielectric matrix εS in (17) are ε11 = 
ε22 = 1110 and ε33 = 852 F/m.

The entries of the stiffness matrix cE in (17) are c11 = 
c22 = 1.076 × 1011 N/m2, c33 = 1.004 × 1011 N/m2, c44 = 
1.962 × 1010 N/m2, c55 = 1.962 × 1010 N/m2, c66 = 2.224 
× 1010 N/m2, c12 = c21 = 6.312 × 1010 N/m2, and c13 = 
c31 = c23 = c32 = 6.385 × 1010 N/m2.

The entries of the electromechanical coupling matrix 
e in (17) are e31 = e32 = −9.60 N/(Vm), e33 = 15.10 N/
(Vm), and e15 = e24 = 12.00 N/(Vm).

Appendix B  
Equations’ Coefficients
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Appendix C  
Boundary Equations

A. Face Volumes With Face on the West, North, South, 
Front, or Rear Boundary

The expressions for the displacements at the West, 
North, South, Front, and Rear boundaries are obtained in 
a similar way as the expressions for the displacements at 
the East boundary. The positions of a control volume at 
the West, North, South, Front, and Rear boundaries are 
shown in Figs. 14, 15, 16, 17, and 18. The expressions for 
the displacements at the West boundary are: 
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Fig. 14. Control volume placed at the West boundary.

Fig. 16. Control volume placed at the South boundary.

Fig. 15. Control volume placed at the North boundary.
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The expressions for the displacements at the North bound-
ary are:
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The expressions for the displacements at the South bound-
ary are:
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The expressions for the displacements at the Front bound-
ary are:
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The expressions for the displacements at the Rear bound-
ary are: 

	 u u A w w
c

tR P R RE RW
ZR= + - +1
55

5( )
d

	 (174)

	 v v A w w
c

tR P R RN RS
ZR= + - +2
44

4( )
d

	 (175)

	
w w A u u A v v

A E
c

t

R P R RE RW R RN RS

R
ZR 

= + - + -

- +

3 4

5 3
33

3

( ) ( )

d 	(176)

The coefficients in (162)–(176) are given in Appendix B.

B. Edge Volume With Faces on the Front and West 
Boundaries or the Front and East Boundaries

Refer to Fig. 19 for the location of the control volume 
in these two cases. First, consider the case where the faces 
are on the Front and East boundaries. On the East face, 
the boundary conditions give the stresses t1e, t5e, and t6e. 
These appear in (49)–(51) for the displacements averaged 
over the East face: uE, vE, and wE. On the Front face, the 
boundary conditions give the stresses t3f, t4f, and t5f. These 
appear in (171)–(173) for the displacements averaged over 
the Front face: uF, vF, and wF. Four of these six equations 
require values for uFE and wFE. These values are approxi-
mated by extrapolation: 
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	 w w w wFE F
XFEF

XFWF
F FW= + -

d
d

( ).	 (178)

The equations for the East face (49)–(51) depended on 
a two-sided approximation (52) for ∂w/∂z. This two-sid-
edness introduced the need for wFE. One could have ap-
proximated the derivative using a one-sided approxima-
tion based on wE and wRE; the two approximations would 
have the same order of accuracy. However, the ODEs for 
uP, vP, and wP for this cell are equations (37)–(39) which 
also require values like wFE. In principle, one could avoid 
this need by doing different approximations (resulting in 
different ODEs) for the boundary volumes. However, ex-
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Fig. 17. Control volume placed at the Front boundary.

Fig. 18. Control volume placed at the Rear boundary.

Fig. 19. Control volume placed at the Front-West or Front-East bound-
aries.
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trapolation allows one to avoid this, leading to a simpler 
program.

If the control volume has faces on the Front and West 
boundaries, the six boundary conditions enter into (162)–
(164) and (171)–(173). Some of these equations require 
values for uFW and wFW which are approximated by ex-
trapolation:

	 u u u uFW W
ZWFW

ZWRW
W RW= + -

d
d

( )	 (179)

	 w w w wFW F
XFWF

XFEF
F FE= + -

d
d

( ).	 (180)

C. Edge Volume With Faces on the Rear and West 
Boundaries or the Rear and East Boundaries

Refer to Fig. 20 for the location of the control volume 
in these two cases. First, if the faces are on the Rear and 
West boundaries then three of the boundary conditions 
will enter into (162)–(164) for uW, vW, and wW and three 
boundary conditions will enter into (174)–(176) for uR, vR, 
and wR. These equations require uRW and wRW which are 
found by extrapolation:

	 u u u uRW W
ZWRW

ZWFW
W FW= + -

d
d

( )	 (181)

	 w w w wRW R
XRWR

XRER
R RE= + -

d
d

( ).	 (182)

If the faces are on the Rear and East boundaries, then 
(49)–(51) and (174)–(176) are used, requiring uRE and 
wRE: 

	 u u u uRE E
ZERE

ZEFE
E FE= + -

d
d

( )	 (183)

	 w w w wRE R
XRER

XRWR
R RW= + -

d
d

( ).	 (184)

D. Edge Volume With Faces on the Front and South 
Boundaries or the Front and North Boundaries

Refer to Fig. 21 for the location of the control vol-
ume in these two cases. In the Front-South case, one uses 
(168)–(170) and (171)–(173). These require vFS and wFS:

	 v v v vFS S
ZSFS

ZSRS
S RS= + -

d
d

( )	 (185)

	 w w w wFS F
YFSF

YFNF
F FN= + -

d
d

( ).	 (186)

In the Front-North case, one uses (165)–(167) and (171)–
(173). These require vFN and wFN:

	 v v v vFN N
ZNFN

ZNRN
N RN= + -

d
d

( )	 (187)

	 w w w wFN F
YFNF

YFSF
F FS= + -

d
d

( ).	 (188)

E. Edge Volume With Faces on the Rear and South 
Boundaries or the Rear and North Boundaries

Refer to Fig. 22 for the location of the control volume 
in these two cases. In the Rear-South case, one uses (168)–
(170) and (174)–(176). These require vRS and wRS: 

	 v v v vRS S
ZSRS

ZSFS
S FS= + -

d
d

( )	 (189)

	 w w w wRS R
YRSR

YRNR
R RN= + -

d
d

( ).	 (190)

In the Rear-North case, one uses (165)–(167) and (174)–
(176). These require vRN and wRN:

	
v v v vRN N

ZNRN

ZNFN
N FN= + -

d
d

( )
	

(191)
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Fig. 20. Control volumes placed at the Rear-West and Rear-East bound-
aries.

Fig. 21. Control volumes placed at the Front-South and Front-North 
boundaries.

Fig. 22. Control volumes placed at the Rear-South and Rear-North 
boundaries.
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	 w w w wRN R
YRNR

YRSR
R RS= + -

d
d

( ).	 (192)

F. Edge Volume With Faces on the North and West 
Boundaries or the North and East Boundaries

Refer to Fig. 23 for the location of the control volume 
in these two cases. In the North-West case, one uses (162)–
(164) and (165)–(167). These require uNW and vNW:

	 u u u uNW W
YWNW

YWSW
W SW= + -

d
d

( )	 (193)

	 v v v vNW N
XNWN

XNEN
N NE= + -

d
d

( ).	 (194)

In the North-East case, one uses (49)–(51) and (165)–
(167). These require uNE and vNE:

	 u u u uNE E
YENE

YESE
E SE= + -

d
d

( )	 (195)

	 v v v vNE N
XNEN

XNWN
N NW= + -

d
d

( ).	 (196)

G. Edge Volume With Faces on the South and West 
Boundaries or the South and East Boundaries

Refer to Fig. 24 for the location of the control vol-
ume in these two cases. In the South-West case, one uses 
(162)–(164) and (168)–(170). These require uSW and vSW:

	 u u u uSW W
YWSW

YWNW
W NW= + -

d
d

( )	 (197)

	 v v v vSW S
XSWS

XSES
S SE= + -

d
d

( ).	 (198)

In the South-East case, one uses (49)–(51) and (168)–
(170). These require uSE and vSE:

	 u u u uSE E
YESE

YENE
E NE= + -

d
d

( )	 (199)

	
v v v vSE S

XSES

XSWS
S SW= + -

d
d

( ).
	

(200)

H. Control Volumes at Corners 

Consider a control volume which has three faces in 
common with the boundary of the piezoelectric material. 
For each face, three stresses are specified. These enter 
into three equations, chosen from E: (49)–(51), W: (162)–
(164), N: (165)–(167), S: (168)–(170), F: (171)–(173), and 
R: (174)–(176). This results in nine equations for nine 
unknowns. Extrapolations are done to approximate u, v, 
and w at the mid-points of the edges, to close the system 
of equations, similar to equations (177)–(200).
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